and Wang, Y. (2014). Whole-Genome bisulfite sequencing of multiple
ividuals reveals complementary roles of promoter and gene body methylation
ranscriptional regulation, Genome Biology, 15, pp. 408.
, Huber, W. and Anders, S. (2014). Moderated estimation of fold change and
persion for RNA-seq data with DESeq2, Genome Biology, 15, pp. 550.
A. and Goldman, N. (2005). An algorithm for progressive multiple alignment
equences with insertions, Proceedings of the National Academy of Sciences of
United States of America, 102, pp. 10557–10562.
Diab, A. R., Haslam, B., Kim, J. G., Grisot, G., Wu, E., Wu, K., Onieva, J. O.,
yer, Y., Boxerman, J. L., Wang, M., Bandler. M., Vijayaraghavan, G. R. and
ensen, A. G. (2021). Robust breast cancer detection in mammography and
ital breast tomosynthesis using an annotation-efficient deep learning approach,
ure Medicine, doi: 10.1038/s41591-020-01174-9.
eng, Z., Zhao, Y. and Volchenboum, S. L. (2011). Bioinformatic analysis and
t-translational modification crosstalk prediction of lysine acetylation, PLoS
e, 6, pp. e28228.
McLachlan, A. D. and Eisenberg, D. (1991). Secondary structure based
files: Use of structure conserving scoring tables in searching protein sequence
abases for structural similarities, Proteins, 10, pp. 229–239.
. J. C. (1992). Bayesian interpolation, Neural Computation, 4, pp. 415–447.
D. J. C. (2003). Information Theory, Inference, and Learning Algorithms,
mbridge University Press, Cambridge).
J. B. (1967). Some methods for classification and analysis of multivariate
ervations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics
d Probability, Berkeley, University of California Press, 1, pp. 281–297.
Y., Steinegger, M., Rost, B. and Bromberg, Y. (2018). HFSP: high speed
mology-driven function annotation of proteins, Bioinformatics, 34, pp. i304–
2.
, Zhang, X., Gil, M. and Anisimova, M. (2018). Progressive multiple sequence
nment with indel evolution, BMC Bioinformatics, 19, pp. 331.
d Das, C. (2010). Protein functional sites prediction using modified bio-basis
ction and quantitative indices, IEEE Transaction on Nanobioscience, 9, pp.
–257.
nd Das, C. (2010b). Efficient design of bio-basis function to predict protein
ctional
sites
using
kernel-based
classifiers,
IEEE
Transaction
on
nobioscience, 9, pp. 242–249.
R. K., Raut, S. A., and Purohit, H. J. (2018). Identification of common key
es in breast, lung and prostate cancer and exploration of their heterogenous
ression, Oncology Letters, pp. 1680–1690.
M., Bahlmann, J., Friederici, A. D. (2012). An approach to separating the levels
hierarchical structure building in language and mathematics, Philosophical
nsactions of the Royal Society B: Biological Sciences, 367, pp. 2033–2045.